线性规划计算

线性规划计算,责任者是潘平奇著,出版者是科学出版社。拼音题名xiànxìngguī huàjì suàn其它题名 线性规划计算(上)附注摘要本书以基础

《线性规划计算(下)》是2012年5月科学出版社出版的图书,作者是潘平奇。编辑推荐 《线性规划计算(下册)》可作为数学及相关专业高年级本科生和研究生教材,也可供决策管理人员、科研和工程技术人员参考,作为教材时,可视具体情况决定内容

《线性规划计算(上)》是2012年科学出版社出版的图书,作者是潘平奇。内容简介 《线性规划计算(上)》论述与线性规划实际计算有紧密联系的理论、方法和实现技术,既包括这一领域的基础和传统内容,也着力反映最新成果和进展。《线性规划

《线性规划计算方法》是1981年科学出版社出版的图书,作者是赵凤治。内容简介 线性规划是一个应用广泛的数学分支.本书介绍几种常用的线性规划计算方法.如:单纯形法、初等矩阵法、迭代法等;讨论几种特殊类型的线性规划问题的解法,如:

建立线性规划模型的方法线性规划应用 编辑 在企业的各项管理活动中,例如计划、生产、运输、技术等问题,线性规划是指从各种限制条件的组合中,选择出最为合理的计算方法,建立线性规划模型从而求得最佳结果。

这个算法建基于非线性规划中Naum Shor发明的椭球法(ellip-soid method),该法又是Arkadi Nemirovski(2003年冯诺伊曼运筹学理论奖得主)和 D. Yudin的凸集最优化椭球法的一般化。理论上,“椭球法”在最恶劣的情况下所需要的计算量

简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。涉及更多个变量的线性规划问题不能用初等方法解决。内容解析 线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种

本书是关于介绍“最优化计算方法”的教学用书,全书内容分为线性规划、非线性规划和现代最优化算法三部分:线性规划主要介绍线性规、划基本理论、单纯形法、对偶理论和应用实例;非线性规划主要介绍非线性规划的基本概念与基本原理、无约束问题

灵敏度分析是研究线性规划的最优解在某一个系数发生离散性变化时的影响,而参数线性规划是研究在参数λ发生连续性变化时最优解的变化情况。进行参数线性规划的目的仍与灵敏度分析一样,对于原规划问题在λ的开拓区间的解不要重新从头计算

《线性规划问题的统一建模与快速算法》系统研究了运用“定界对偶算法”求解线性规一划问题的建模与算法。全书共分8章,第1章介绍了线性规划问题的一般模型及各种形式;第2章总结了求解线性规划问题的一般方法;第3章析了“定界对偶算法

相关文档

线性规划计算
线性规划计算(下)
线性规划计算(上)
线性规划计算方法
线性规划
线性规划问题
简单的线性规划
最优化计算方法
参数线性规划
线性规划问题的统一建模与快速算法
fpbl.net
zxqs.net
rprt.net
qwfc.net
ppcq.net
电脑版